You are here

Professor Dmitrii Perepichka *McGill University

Event Date: 
Monday, January 15, 2018 - 3:30pm to 4:30pm

Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Trebuchet MS","sans-serif"; mso-ascii-font-family:"Trebuchet MS"; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:"Trebuchet MS"; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US; mso-fareast-language:EN-US;}

Normal 0 false false false EN-CA X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Trebuchet MS","sans-serif"; mso-ascii-font-family:"Trebuchet MS"; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:"Trebuchet MS"; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US; mso-fareast-language:EN-US;}   Normal 0 false false false EN-GB X-NONE X-NONE

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:EN-GB; mso-fareast-language:EN-GB;}

Normal 0 false false false EN-GB X-NONE X-NONE

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:EN-GB; mso-fareast-language:EN-GB;} Organic Semiconductors: from Small Molecules to 2D Polymers

 

Normal 0 false false false EN-GB X-NONE X-NONE

/* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif"; mso-ansi-language:EN-GB; mso-fareast-language:EN-GB;}

Most known organic materials are insulating solids with a large band-gap. Electrical conductivity displayed by some organic molecules and polymers is generally ascribed to p-electron conjugation in these materials. The last ~50 years of ‘organic electronics’ has resulted in synthesis of myriads of organic (semi)conductors and gave rise to numerous important applications: in solid-state lighting, displays, printed circuits, etc. However, our understanding of the charge transport through organic materials still leaves room for numerous gaps and misconceptions. As a result, most of new ‘designed’ organic electronic materials yield neither new nor improved characteristics in electronic devices. Exposing these limitations is the underlying philosophy of our work. This lecture will deal with two inter-related questions: (i) what limits the charge mobility of molecular semiconductors? (ii) can these limits be expanded in 2D polymers? In the first part of the talk, I will show design of large band-gap (3.35 eV) naphthalene-based semiconductors with charge mobility >1 cm2/Vs, emphasizing how the electronic coupling between the molecules is limited by their crystalline packing. In the second part, I will focus on the idea of using 2D covalent networks for strengthening this electronic coupling. Considering the impact of graphene on solid state physics, it would be desirable to combine the tunability of a molecular chemistry with 2D electron confinement effects, in a single material – a 2D p-conjugated polymer.[2] I will summarize the current state of art, focusing on our own work, in synthesis of 2D conjugated polymer networks, by surface-templated polymerization [3] and through dynamic covalent polymerization in solution.[4]

[1] L. Yan, F. Popescu, M. R. Rao, H. Meng, D. F. Perepichka, Adv. Electr. Mater. 2017, 3, 1600556.

[2] D. F. Perepichka, F. Rosei, Science 2009, 323, 216. R. Gutzler, D. F. Perepichka, J. Am. Chem. Soc. 2013, 135, 16585.

[3] L. Cardenas et al. Chem. Sci. 2013, 4, 3263; G. Vasseur et al. Nat. Comm. 2016, 7, 10235.

[4] M. R. Rao, Y. Fang, S. De Feyter, D. F. Perepichka, J. Am. Chem. Soc. 2017, 139, 2421.

 


Event Location: 
McMaster
Location Details: 
ABB-165